Nền tảng lý thuyết Nhiệt độ

Về mặt lịch sử, có một số cách tiếp cận khoa học để giải thích nhiệt độ: mô tả nhiệt động lực học cổ điển dựa trên các biến thực nghiệm vĩ mô có thể đo được trong phòng thí nghiệm; lý thuyết động học của khí liên quan đến mô tả vĩ mô với sự phân bố xác suất của năng lượng chuyển động của các hạt khí; và một giải thích vi mô dựa trên vật lý thống kêcơ học lượng tử. Ngoài ra, các phương pháp xử lý toán học nghiêm ngặt và thuần túy đã cung cấp một cách tiếp cận tiên đề đối với nhiệt động lực học và nhiệt độ cổ điển.[64] Vật lý thống kê cung cấp sự hiểu biết sâu sắc hơn bằng cách mô tả hành vi nguyên tử của vật chất và suy ra các tính chất vĩ mô từ các trung bình thống kê của các trạng thái vi mô, bao gồm cả trạng thái cổ điển và lượng tử. Trong mô tả vật lý cơ bản, sử dụng các đơn vị tự nhiên, nhiệt độ có thể được đo trực tiếp bằng đơn vị năng lượng. Tuy nhiên, trong các hệ thống đo lường thực tế dành cho khoa học, công nghệ và thương mại, chẳng hạn như hệ đơn vị mét hiện đại, mô tả vĩ mô và hiển vi có mối quan hệ với nhau bởi hằng số Boltzmann, một hệ số tỷ lệ cân bằng nhiệt độ với động năng trung bình vi mô.

Mô tả vi mô trong cơ học thống kê dựa trên một mô hình phân tích một hệ thống thành các hạt vật chất cơ bản của nó hoặc thành một tập hợp các dao động cổ điển hoặc cơ lượng tử và coi hệ thống như một tập hợp thống kê của các vi vật chất. Là một tập hợp các hạt vật chất cổ điển, nhiệt độ là thước đo năng lượng trung bình của chuyển động, gọi là động năng, của các hạt, cho dù ở dạng rắn, lỏng, khí hay plasmas. Động năng, một khái niệm của cơ học cổ điển, là một nửa khối lượng của một hạt nhân với bình phương tốc độ của nó. Trong cách giải thích cơ học về chuyển động nhiệt này, động năng của các hạt vật chất có thể nằm trong vận tốc của các hạt chuyển động tịnh tiến hoặc dao động của chúng hoặc trong quán tính của các chế độ quay của chúng. Trong các chất khí hoàn hảo về mặt giải phẫu và, gần đúng, trong hầu hết các chất khí, nhiệt độ là thước đo động năng trung bình của hạt. Nó cũng xác định hàm phân phối xác suất của năng lượng. Trong vật chất cô đặc, và đặc biệt là chất rắn, mô tả cơ học thuần túy này thường ít hữu ích hơn và mô hình dao động cung cấp mô tả tốt hơn để giải thích các hiện tượng cơ lượng tử. Nhiệt độ xác định sự chiếm hữu thống kê của các vi hạt trong quần thể. Định nghĩa vi mô của nhiệt độ chỉ có ý nghĩa trong giới hạn nhiệt động lực học, nghĩa là đối với các tập hợp lớn của các trạng thái hoặc các hạt, để đáp ứng các yêu cầu của mô hình thống kê.

Động năng cũng được coi là một thành phần của nhiệt năng. Năng lượng nhiệt có thể được phân chia thành các thành phần độc lập do bậc tự do của các hạt hoặc các phương thức của bộ dao động trong hệ nhiệt động lực học. Nhìn chung, số lượng những bậc tự do mà có sẵn cho equipartitioning năng lượng phụ thuộc vào nhiệt độ, tức là khu vực năng lượng của tương tác đang được xem xét. Đối với chất rắn, nhiệt năng liên quan chủ yếu với dao động của các nguyên tử hoặc phân tử của nó về vị trí cân bằng của chúng. Trong một chất khí lý tưởng, động năng chỉ được tìm thấy trong chuyển động tịnh tiến của các hạt. Trong các hệ thống khác, chuyển động dao độngchuyển động quay cũng đóng góp bậc tự do.

Thuyết động học chất khí

Có thể hiểu lý thuyết về nhiệt độ trong khí lý tưởng từ lý thuyết Động học.

MaxwellBoltzmann đã phát triển một lý thuyết động học mang lại sự hiểu biết cơ bản về nhiệt độ trong chất khí.[65] Lý thuyết này cũng giải thích định luật khí lý tưởng và nhiệt dung quan sát được của các chất khí đơn thể (hoặc 'khí trơ').[66][67][68]

Đồ thị của áp suất và nhiệt độ cho ba mẫu khí khác nhau được ngoại suy về độ không tuyệt đối

Định luật khí lý tưởng dựa trên các mối quan hệ thực nghiệm quan sát được giữa áp suất (p), thể tích (V) và nhiệt độ (T), và được công nhận từ rất lâu trước khi lý thuyết động học của chất khí được phát triển (xem định luật BoyleCharles). Định luật khí lý tưởng phát biểu như sau:[69]

p V = n R T , {\displaystyle pV=nRT,}

với n là số mol khí và R = &0000000000000008.3144638.314462618... J⋅mol−1⋅K−1[70] . .   J⋅mol −1 ⋅K −1 [70]hằng số khí.

Mối quan hệ này cho chúng ta gợi ý đầu tiên rằng có một số không tuyệt đối trong thang nhiệt độ, bởi vì nó chỉ đúng nếu nhiệt độ được đo trên một thang tuyệt đối như Kelvin's. Định luật khí lý tưởng cho phép người ta đo nhiệt độ trên thang đo tuyệt đối này bằng nhiệt kế khí. Nhiệt độ tính bằng kelvins có thể được định nghĩa là áp suất tính bằng pascal của một mol khí trong bình chứa một mét khối, chia cho hằng số khí.

Mặc dù nó không phải là một thiết bị đặc biệt tiện lợi, nhưng nhiệt kế khí cung cấp một cơ sở lý thuyết thiết yếu để tất cả các nhiệt kế có thể được hiệu chuẩn. Trong thực tế, không thể sử dụng nhiệt kế khí để đo nhiệt độ không tuyệt đối vì các chất khí có xu hướng ngưng tụ thành chất lỏng rất lâu trước khi nhiệt độ bằng không. Tuy nhiên, có thể ngoại suy về độ không tuyệt đối bằng cách sử dụng định luật khí lý tưởng, như thể hiện trong hình.

Lý thuyết động học giả định rằng áp suất là do lực liên kết với các nguyên tử riêng lẻ tác động lên các bức tường, và tất cả năng lượng là động năng tịnh tiến. Sử dụng một lập luận đối xứng phức tạp,[71] Boltzmann đã suy ra cái mà ngày nay được gọi là hàm phân phối xác suất Maxwell-Boltzmann cho vận tốc của các hạt trong khí lý tưởng. Từ hàm phân phối xác suất đó, động năng trung bình (trên mỗi hạt) của khí lý tưởng dạng đơn nguyên tử là [67][72]

E k = 1 2 m v rms 2 = 3 2 k B T , {\displaystyle E_{\text{k}}={\frac {1}{2}}mv_{\text{rms}}^{2}={\frac {3}{2}}k_{\text{B}}T,}

trong đó hằng số Boltzmann k B là hằng số khí lý tưởng chia cho số Avogadro, và v rms = ⟨ v 2 ⟩ {\displaystyle v_{\text{rms}}={\sqrt {\left\langle v^{2}\right\rangle }}} là tốc độ căn bậc hai bình phương trung bình. Do đó, định luật khí lý tưởng phát biểu rằng nội năng tỷ lệ thuận với nhiệt độ.[73] Tỷ lệ thuận giữa nhiệt độ và nội năng là một trường hợp đặc biệt của định lý phân chia, và chỉ nằm trong giới hạn cổ điển của khí lý tưởng. Nó không giữ cho hầu hết các chất, mặc dù đúng là nhiệt độ là một hàm đơn điệu (không giảm) của nội năng.

Định luật 0 của nhiệt động lực học

Khi hai vật thể cô lập khác được kết nối với nhau bằng một con đường vật chất cứng không thấm vào vật chất, thì sẽ có sự truyền năng lượng tự phát dưới dạng nhiệt từ vật nóng hơn sang vật lạnh hơn của chúng. Cuối cùng, chúng đạt đến trạng thái cân bằng nhiệt lẫn nhau, trong đó quá trình truyền nhiệt chấm dứt, và các biến trạng thái tương ứng của các vật thể đã ổn định trở nên không thay đổi.

Một phát biểu của định luật 0 của nhiệt động lực học là nếu hai hệ đều ở trạng thái cân bằng nhiệt với hệ thứ ba, thì chúng cũng cân bằng nhiệt với nhau.

Tuyên bố này giúp xác định nhiệt độ nhưng bản thân nó không hoàn thiện định nghĩa. Nhiệt độ thực nghiệm là một thang số cho độ nóng của hệ nhiệt động lực học. Tính nóng như vậy có thể được định nghĩa là tồn tại trên một ống góp một chiều, trải dài giữa nóng và lạnh. Đôi khi định luật số 0 được phát biểu bao gồm sự tồn tại của đa tạp độ nóng phổ quát duy nhất, và các thang số trên đó, để cung cấp một định nghĩa đầy đủ về nhiệt độ thực nghiệm.[56] Để phù hợp với phép đo nhiệt thực nghiệm, vật liệu phải có mối quan hệ đơn điệu giữa độ nóng và một số biến trạng thái dễ đo, chẳng hạn như áp suất hoặc thể tích, khi tất cả các tọa độ liên quan khác được cố định. Một hệ thống đặc biệt thích hợp là khí lý tưởng, có thể cung cấp thang nhiệt độ phù hợp với thang Kelvin tuyệt đối. Thang đo Kelvin được xác định trên cơ sở định luật thứ hai của nhiệt động lực học.

Định luật thứ hai của nhiệt động lực học

Để thay thế cho việc xem xét hoặc xác định định luật số 0 của nhiệt động lực học, sự phát triển lịch sử trong nhiệt động lực học là xác định nhiệt độ theo định luật thứ hai của nhiệt động lực học liên quan đến entropy. Định luật thứ hai tuyên bố rằng bất kỳ quá trình nào cũng sẽ dẫn đến không thay đổi hoặc làm tăng thực entropy của vũ trụ. Điều này có thể hiểu theo nghĩa xác suất.

Ví dụ, trong một loạt các lần tung đồng xu, một hệ thống có thứ tự hoàn hảo sẽ là một hệ thống trong đó mọi lần tung đều xuất hiện mặt ngửa hoặc mọi lần tung đều có mặt sấp. Điều này có nghĩa là kết quả luôn là kết quả giống nhau 100%. Ngược lại, nhiều kết quả hỗn hợp (rối loạn) có thể xảy ra và số lượng của chúng tăng lên theo mỗi lần tung. Cuối cùng, sự kết hợp của ~ 50% ngửa và ~ 50% sấp chiếm ưu thế và thu được một kết quả khác biệt đáng kể với 50/50 ngày càng trở nên khó xảy ra. Do đó hệ thống tiến triển một cách tự nhiên đến trạng thái rối loạn tối đa hoặc rối loạn entropy.

Vì nhiệt độ chi phối sự truyền nhiệt giữa hai hệ thống và vũ trụ có xu hướng tiến tới cực đại của entropi, người ta cho rằng có một số mối quan hệ giữa nhiệt độ và entropi. Động cơ nhiệt là thiết bị biến đổi nhiệt năng thành cơ năng mang lại hiệu quả công việc. và phân tích động cơ nhiệt Carnot cung cấp các mối quan hệ cần thiết. Công của động cơ nhiệt ứng với hiệu giữa nhiệt lượng đưa vào hệ ở nhiệt độ cao qH và nhiệt lượng trích ra ở nhiệt độ thấp qC. Hiệu suất là công chia cho nhiệt lượng đầu vào:

efficiency = w cy q H = q H − q C q H = 1 − q C q H , {\displaystyle {\text{efficiency}}={\frac {w_{\text{cy}}}{q_{\text{H}}}}={\frac {q_{\text{H}}-q_{\text{C}}}{q_{\text{H}}}}=1-{\frac {q_{\text{C}}}{q_{\text{H}}}},}

 

 

 

 

(4)

trong đó w cy là công việc được thực hiện mỗi chu kỳ. Hiệu suất chỉ phụ thuộc vào q C / q H. Vì q C và q H tương ứng với sự truyền nhiệt ở các nhiệt độ T C và T H tương ứng, q C / q H nên một số hàm của các nhiệt độ này:

q C q H = f ( T H , T C ) . {\displaystyle {\frac {q_{\text{C}}}{q_{\text{H}}}}=f\left(T_{\text{H}},T_{\text{C}}\right).}

 

 

 

 

(5)

Định lý Carnot phát biểu rằng tất cả các động cơ đảo chiều hoạt động giữa cùng một bình chứa nhiệt đều có hiệu suất như nhau. Do đó, động cơ nhiệt hoạt động trong khoảng thời gian từ T 1 đến T 3 phải có cùng hiệu suất với động cơ gồm hai chu kỳ, một giữa T 1 và T 2, và chu kỳ thứ hai giữa T 2 và T 3. Điều này chỉ có thể xảy ra nếu

q 13 = q 1 q 2 q 2 q 3 , {\displaystyle q_{13}={\frac {q_{1}q_{2}}{q_{2}q_{3}}},}

nghĩa là

q 13 = f ( T 1 , T 3 ) = f ( T 1 , T 2 ) f ( T 2 , T 3 ) . {\displaystyle q_{13}=f\left(T_{1},T_{3}\right)=f\left(T_{1},T_{2}\right)f\left(T_{2},T_{3}\right).}

Vì chức năng thứ nhất độc lập với T 2 nên nhiệt độ này phải triệt tiêu ở phía bên phải, nghĩa là f (T 1, T 3) có dạng g (T 1) / g (T 3) (tức là f(T1, T3) = f(T1, T2)f(T2, T3) = g(T1)/g(T2) · g(T2)/g(T3) = g(T1)/g(T3)), trong đó g là hàm của một nhiệt độ duy nhất. Một thang nhiệt độ hiện có thể được chọn với thuộc tính thỏa mãn

q C q H = T C T H . {\displaystyle {\frac {q_{\text{C}}}{q_{\text{H}}}}={\frac {T_{\text{C}}}{T_{\text{H}}}}.}

 

 

 

 

(6)

Việc thay thế (6) trở lại (4) cho một mối quan hệ đối với hiệu suất về mặt nhiệt độ:

efficiency = 1 − q C q H = 1 − T C T H . {\displaystyle {\text{efficiency}}=1-{\frac {q_{\text{C}}}{q_{\text{H}}}}=1-{\frac {T_{\text{C}}}{T_{\text{H}}}}.}

 

 

 

 

(7)

Đối với T C = 0 hiệu suất là 100% và hiệu suất đó lớn hơn 100% dưới 0K. Vì hiệu suất lớn hơn 100% vi phạm định luật đầu tiên của nhiệt động lực học, điều này ngụ ý rằng 0K là nhiệt độ nhỏ nhất có thể. Trên thực tế, nhiệt độ thấp nhất từng thu được trong một hệ thống vĩ mô là 20 nK, đã đạt được vào năm 1995 tại NIST. Trừ phần bên phải của (5) khỏi phần giữa và sắp xếp lại ta được

q H T H − q C T C = 0 , {\displaystyle {\frac {q_{\text{H}}}{T_{\text{H}}}}-{\frac {q_{\text{C}}}{T_{\text{C}}}}=0,}

trong đó dấu trừ cho biết nhiệt thoát ra từ hệ thống. Mối quan hệ này cho thấy sự tồn tại của một hàm trạng thái, S, được xác định bởi

d S = d q rev T , {\displaystyle dS={\frac {dq_{\text{rev}}}{T}},}

 

 

 

 

(8)

trong đó chỉ số phụ chỉ ra một quá trình có thể đảo ngược. Sự thay đổi của chức năng trạng thái này xung quanh bất kỳ chu kỳ nào cũng bằng không, như cần thiết cho bất kỳ chức năng trạng thái nào. Hàm này tương ứng với entropy của hệ thống, đã được mô tả trước đây. Sắp xếp lại (8) đưa ra một công thức cho nhiệt độ về các phần tử bán nghịch đảo vô số thập phân hư cấu của entropi và nhiệt:

T = d q rev d S . {\displaystyle T={\frac {dq_{\text{rev}}}{dS}}.}

 

 

 

 

(9)

Đối với một hệ, trong đó entropi S (E) là một hàm của năng lượng E của nó, nhiệt độ T được cho bởi

T − 1 = d d E S ( E ) , {\displaystyle T^{-1}={\frac {d}{dE}}S(E),}

 

 

 

 

(10)

tức là nghịch đảo của nhiệt độ là tốc độ tăng của entropi đối với năng lượng.

Liên quan

Tài liệu tham khảo

WikiPedia: Nhiệt độ http://www.calphad.com/absolute_zero.html http://www.e-booksdirectory.com/details.php?ebook=... http://lebanese-economy-forum.com/wdi-gdf-advanced... http://adsabs.harvard.edu/abs/1962AmJPh..30..294T http://adsabs.harvard.edu/abs/1987FoPh...17..713K http://adsabs.harvard.edu/abs/2006AmJPh..74..187S http://articles.adsabs.harvard.edu/cgi-bin/nph-iar... http://intro.chem.okstate.edu/1314F00/Laboratory/G... http://eo.ucar.edu/skymath/SECT1WEB.PDF http://www.uic.edu/labs/trl/1.OnlineMaterials/Basi...